Closing Mon night: $\quad 10.1$
Closing Wed night: 2.1
Closing Fri night: $\quad 2.2$
Warning: The first two assignments will be challenging. Visit the MSC!
Check out the newsletter for hints.
Entry Task (like problem 2 of 10.1):
There are two points on the unit circle at which the tangent line also passes through the point $(-3,4)$.

1. Label unknown point(s): (a,b).
2. Write what you know about (a,b).
(a) On circle.
(b) Line tangent to circle at (a, b).
(c) Line goes thru ($-3,4$) and (a, b)
3. Solve.

Finishing 10.1

Circular Motion: $x=r \cos \left(\theta_{0}+\omega t\right)$

$$
y=r \sin \left(\theta_{0}+\omega t\right)
$$

Examples:
(a) $x=2 \cos \left(\frac{\pi}{4} t\right), y=2 \sin \left(\frac{\pi}{4} t\right)$
(b) $x=3 \cos \left(-\frac{\pi}{2} t\right), y=3 \sin \left(-\frac{\pi}{2} t\right)$
(c) $x=7 \cos \left(\frac{\pi}{6}+\frac{\pi}{2} t\right)$,

$$
y=7 \sin \left(\frac{\pi}{6}+\frac{\pi}{2} t\right)
$$

Identify θ_{0}, r, and ω.
Plug in $\mathrm{t}=0 \mathrm{sec}$ and $\mathrm{t}=1 \mathrm{sec}$.
What do these constants represent?

Summary:
$\theta_{0}=$ the starting angle (radians)
$\mathrm{w}=$ angular speed (rad/time)
t = time

Example:
A bug follows a circular path with radius 8 inches.
It starts at the west-most edge.
It rotates counterclockwise at a constant 10 revolutions per minute.

Give the equations for motion in terms of time t.

$$
\begin{array}{ll}
r=? ? & \\
\theta_{0}=? ? & \text { (give in radians) } \\
w=? ? & \text { (give in radians/min) }
\end{array}
$$

Ch. 2 Limits and Derivatives

2.1 Motivation

Calculus is primarily about "rates". Recall:

$$
\text { rate }=\frac{\text { change in quantity }}{\text { change in time }}
$$

Ultimately in this course, we will find instantaneous rates, by building a limiting process of better and better approximations.

Example: The distance traveled by an object is recorded at various times:

t (seconds)	0	1	2	3
Dist (meters)	0	1.2	4.5	10.4

1. What is the average velocity from $t=1$ to $t=3$?
2. What is the average velocity from $t=2$ to $t=3$?
3. What is the instantaneous velocity at $\mathrm{t}=3$?

Example:

Consider the function: $f(x)=x^{2}$

1. Find the slope of the secant line from $x=1$ to $x=2$.
2. Find the slope of the secant line from $x=1$ to $x=1.1$.

Ultimately, in this course we will find $\mathrm{f}^{\prime}(1)=$ 'slope of the tangent at $x=1$ '

$$
=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}
$$

